ساختمان های بتن آرمه و توضیحاتی مختصر در مورد نحوه اجرای آن

ساختمانهای بتنی


 
ساختمان بتنی ساختمانی است که برای اسکلت اصلی آن از بتن آرمه (سیمان، شن، ما سه و فولاد به صورت ساده یا آجدار) استفاده شده باشد. در ساختمانهای بتنی سقفها بوسیله تاوه (دالهای بتنی) پوشیده می‌شود. و یا از سقفهای تیرچه و بلوک و یا سایر سقفهای پیش ساخته استفاده می‌گردد. و برای دیوارهای جداکننده (پارتیشن) ممکن است ازانواع آجر مانند سفال تیغه‌ای، آجر ماشینی سوراخ دار آجر معمولی کوره و یا تیغه گچی و یا چوب استفاده شود ممکن است از دیوارهای بتن آرمه نیز استفاده شود. به هر حال اولین نوع ساختمان شاه تیرها و ستونها از بتن آرمه ساخته می‌شود.



مراحل مختلف ساخت یک ساختمان

بازدید زمین و ریشه کنی


 
قبل از شروع هر نوع عملیات ساختمانی باید محل ساختمان بازدید شده و وضعیت و فاصله آن نسبت به خیابانها و جاده‌های اطراف مورد بازدید قرار بگیرد و همچنین پستی و بلندی و سایر عوارض زمینی می‌بایستی بوسیله مهندسین نقشه بردار تعیین گردد و همچنین باید محل چاههای فاضلاب و چاههای آبهای قدیمی و مسیر قنات قدیمی که ممکن است در هر زمینی موجود باشد تعیین شده و محل آن نسبت به پی سازی مشخص گردد. و در صورت لزوم می‌باید این چاهها با بتن و یا شفته پر شود و محل احداث ساختمان نسبت به مین تعیین شود و نسبت به ریشه کنی (کندن ریشه‌های نباتی که ممکن است در زمین روئیده باشد) آن محل اقدام شود و خاکهای اضافی به بیرون حمل گردد و بالاخره باید شکل هندسی زمین و زوایای آن کاملاً‌ معلوم شده و با نقشه ساختمان مطابقت داده شود.



پیاده کردن نقشه


 
پس از بازدید محل و ریشه کنی اولین اقدام در ساختن یک ساختمان پیاده کردن نقشه می باشد منظور از پیاده کردن نقشه یعنی انتقال نقشه از روی کاغذ بر روی زمین با ابعاد اصلی به طوری که محل دقیق پی ها وستونها ودیوارها و زیرزمینها و عرض پیها روی زمین به خوبی مشخص باشد و همزمان با ریشه کنی و بازدید محل باید قسمتهای مختلف نقشه ساختمان مخصوصاً‌ نقشه پی کنی کاملا ‌ً‌مورد مطالعه قرار گرفته به طوری که در هیچ قسمت نقطه ابهامی باقی نماند و بعداً‌ اقدام به پیاده کردن نقشه از دوبین‌های نقشه برداری که شامل تئودولیت و نیوو می باشد استفاده می‌گردد.

رپر ( پنچ مارک )


 
با توجه به این که هر نقطه از ساختمان نسبت به سطح زمین دارای ارتفاع معینی است که باید در طول مدت اجرا در هر زمان قابل کنترل باشد برای جلوگیری از اشتباه قطعه بتنی به ابعاد دلخواه در نقطه‌ای دورتر از محل ساختمان می‌سازند به طوریکه در موقع گودبرداری و یا پی کنی به آن آسیب نرسد و در طول ساختمان ارتفاع‌های ساختمان منجمله ارتفاع فنداسیون را با آن می‌سنجند که به این نقطه بتنی رپر می‌گویند.


 
حال در حین ساختن ساختمان ممکن است رپر در جایی خیلی دورتر از محیط کارگاه باشد در این صورت بایستی بوسیله دوربین تئودولیت این نقطه را به داخل کارگاه انتقال داد و تمام ارتفاعات منجمله ارتفاع میخهایی که در ابتدا برای مرکز فنداسیون کوبیده می‌شود استفاده می‌گردد بدین صورت که دوربین تئودولیت را روی طول کمتر فنداسیونها که پشت سرهم و در یک ردیف قرار دارد. ردیف قرار دادی از روی این طول کوچکتر صفر دوربین را باز می‌کنند وسپس دوربین را به اندازه 100 گواه که همان 90 درجه است باز می‌کنند و سپس ارتفاع میخ را توسط دوربین نیوو با توجه به ارتفاع نقطه پنچ مارک نقشه تنظیم می‌کنند. نحوه تراز کردن دوربین نیوو (ترازیاب) بدین ترتیب است که ابتدا پایه‌ها را شل کرده و تا بالای چانه بوسیله کف دست بالا می‌آوریم و بوسیله سرپیچ که در اطراف دوربین قرار دارد دوربین را تراز می‌کنیم به طوری که حباب دقیقاً‌ در وسط دایره قرار بگیرد.

نحوه تراز کردن دوربین تئودولیت بدین ترتیب است که ابتدا پایه‌ها را شل کرده (بوسیله پیچ‌هایی که روی پایه است) و سپس بوسیله کف دست دوربین را تا زیر چانه می‌آوریم و سپس پیچها را سفت می‌کنیم و پایه‌ها را بوسیله پا باز کرده به طوری که سه زاویه مساوی با یکدیگر بسازند برای استقرار کامل بوسیله پا فشاری روی پدال می‌آوریم تا خوب در زمین فرو رود و تکان نخورد. و سپس پیچهای پایه را یکی یکی شل کرده و بالا و پایین کردن پایه‌ها تراز دایره‌ای را روی دستگاه را میزان می‌کنیم ناگفته نماند که قبل از میزان کردن تراز دایره‌ای دوربین را از جعبه به ارامی در آورده روی سه پایه بوسیله پیچی که در زیر سه پایه قرار دارد محکم می‌بندیم.


 
پس از این مرحله نوبت به میزان کردن تراز لوبیایی می‌رسد بدین ترتیب که ابتدا دو پیچ که از یکدیگر فاصله بیشتری دارند تراز لوبیایی را میزان می‌کنیم و سپس دوربین را به اندازه 90 درجه می‌چرخانیم و بعد تراز لوبیایی را دوباره بوسیله یک پیچ باقی مانده میزان می‌کنیم حال دوربین آماده ترازیابی وزاویه خانی می‌باشد. نحوه خواندن زاویه بدین ترتیب است که بوسیله چشمی که زاویه خوانی صورت می‌گیرد بدین صورت که کلیدی که پشت دستگاه وجود دارد زاویه را به آن نقطه‌ای که نشانه روی کرده‌ایم می‌بندیم یعنی صفری را که قبلاً‌ بسته بودیم باز می‌کنیم وسپس دوربین را می‌چرخانیم به نقطه دلخواه و به این ترتیب زاویه بین نقطه مورد

نظر با نقطه دلخواه به دست می‌آید.

 

 



گودبرداری


 
گودبرداری بعد از پیاده کردن نقشه و کنترل آن در صورت آن در صورت لزوم اقدام به گودبرداری می‌نمایند. گودبرداری برای آن قسمت از ساختمان انجام می‌شود مانند موتورخانه‌ها وانبارها و پارکینگ‌ها و غیره. همچنین گودبرداری برای رسیدن به خاکی که مقاومت لازم برای تحمل بار ساختمان داشته باشد نیز انجام می‌شود. ظاهراً‌ حداکثر عمق مورد نیاز برای گودبرداری تا روی پی می‌باشد بعلاوه چند سانتی متر بیشتر برای فرش کف و عبور لوله‌ها (در حدود 20 سانتی‌متر که 6 سانتی‌متر برای فرش کف و 14 سانتی‌متر برای عبور لوله‌ می‌باشد). ولی گاهی اوقات گودبرداری را تا زیر پی ادامه می‌دهند در این صورت قالبندی وشناژبندی و آرموتور بندی راحت‌تر امکان پذیر می‌شود. و ثانیاً‌ پی‌های ما تمیزتر و درستر خواهد بود و در ثانی می‌توانیم خاک حاصل از چاه کنی و همچنین تفاله‌های ساختمان را در فضای ایجاد شده بین پی‌ها بریزیم که این مطلب از لحاظ اقتصادی مقرون به صرفه می‌باشد. زیرا معمولاً‌‌ در موقع گودبرداری کار با ماشین صورت می‌گیرد و درصورتیکه برای خارج نمودن تفاله‌ها و خاک حاصل از چاه فاضلاب از محیط کارگاه می‌باید از وسایل دستی استفاده نماییم که این امر مستلزم هزینه بیشتری نسبت به کار ماشین می‌باشد. البته در مورد پی‌های نواری این کار عملی نیست زیرا معمولاً‌ پی‌سازی در پی‌های نواری با شفته آهک می‌باشد که بدون قالب‌بندی بوده و شفته آهک در محل پی‌های حفر شده ریخته شده می‌شود در این صورت ناچار هستیم در ساختمان‌هایی که با پی نواری ساخته می‌شود اگر گودبرداری نیاز داشتیم گودبرداری را تا روی پی ادامه می‌دهیم چنانچه در گودبرداری در زمینهایی که آبهای تحت العرض در سطح بالا قرار دارد در محل گودبرداری آب جمع شود بهتر است که حوضچه کوچکی در وسط گودحفر نموده و آبهای جمع شده را با توجه به سرعت جمع شدن به وسیله سطل یا پمپ به خارج منتقل کنیم.


پی کنی


 
با توجه به این که کلیه بار ساختمان به وسیله دیوارها یا ستونها به زمین منتقل می‌شود در نتیجه ساختمان باید روی زمین قابل اعتماد بوده و قابلیت تحمل بار ساختمان را داشته باشد بنا گردد. برای دسترسی به چنین زمینی ناچار به ایجاد پی برای ساختمان می‌باشیم. همچنین برای محافظت پایه ساختمان و جلوگیری از تاثیر عوامل جوی نیز باید حداقل پی هایی که به عمق50 تا 40 سانتی‌متر حفر کنیم.


 
ابعاد پی عرض و طول و عمق پی‌ها کاملاً‌ بستگی به وزن ساختمان و قدرت تحمل خاک محل ساختمان دارد. در ساختمانهای بزرگ قبل از شروع کار بوسیله آزمایشات مکانیک خاک (که به دو طریقه بارگذاری و وزن مخصوص انجام می‌شوند) قدرت مجاز تحملی زمین را تعیین نموده و از روی آن مهندس محاسب ابعاد پی را تعیین می‌نمایند.



انواع پی‌ها:

 

  1. پی‌ نقطه‌ای
  2. پی‌های نواری
  3. پی‌های عمومی
  4. شمع‌کوبی یا پی‌های عمیق

پی‌های نقطه‌ای برای ساختمان‌هایی که بار آن بطور متمرکز (نقطه‌ای) به زمین منتقل می‌شود ساخته می‌گردد مانند : ساختمانهای فلزی و یا ساختمان‌های بتنی.

پی‌سازی - بتن مگر


 
لایه‌های پی سازی در پی‌های نواری به ترتیب از پایین عبارتند از: شفته ریزی- کرسی چینی شناژ- ملات ماسه سیمان برای زیر ایزولاسیون رطوبتی قیرگونی برای ایزولاسیون رطوبتی- ملات ماسه سیمان برای پوشش روی قیرگونی دیوار چینی اصلی. به پی های عمومی رادیه ژنرال هم می‌گویند و از بتن مسلح ساخته می‌شود و دارای محاسبات فنی مفصل ودقت اجرای فوق العاده می‌باشند برای ساختمانهایی که دارای وزن فوق العاده می‌باشد و یا ساختمان‌هایی در زمین‌های سست ساخته می‌شود این گونه پی‌ها ایجاد می‌گردند. همچنین در زمینهایی که خیلی سست بوده و به هیچ وجه قدرت تحمل بار ساختمان را نداشته مانند خاکهای دستی یازمینهای ماسه‌ای و یا درمحل‌هایی که زمین بکر در عمق‌های زیاد قرار داشته باشند از شمع کوبی استفاده می‌شود. که خود شمع کوبی انواع مختلفی دارد مانند شمعهای چوبی و آهکی و فلزی در جا یا فلزی که پس از بتن ریزی قالب شمع را در می‌آورند. عمق پی‌های نواری و نقطه‌ای در حدود 40 الی 50 سانتی‌متر و عمق پی‌های عمومی 80 الی 100 سانتی‌متر می‌باشد.



پی‌سازی


 
پس از گودبرداری و رسیدن به خاک مناسب که دارای مقاومت کافی باشد برای پی سازی در ابتدا بتن مگر فونداسیون می‌ریزند. که این بتن مگر لاغر هم می‌گویند مقدار سیمان در بتن مگر در حدود 100 الی 150 کیلوگرم در متر مکعب می‌باشد. در پی‌های نقطه‌ای بتن مگر به دو دلیل مورد استفاده قرار می‌گیرد.

  1. برای جلوگیری از تماس مستقیم بتن اصلی پی با خاک
  2. برای رگلاژ کف پی و ایجاد سطح صاف برای ادامه پی سازی

ضخامت بتن مگر در حدود 10 سانتی‌متر می‌باشد و معمولاً‌ قالب بندی (چوبی یا آجری) از روی بتن مگر شروع می‌شود.



قالب بندی شناژ و فنداسیون


 
در کارگاههای ساختمانی بتنی سه کارگاه وجود دارد که هم زمان به کار خود ادامه می‌دهند. این سه کارگاه عبارتند از : کارگاههای بتن سازی- آرماتور بندی و قالب بندی. از آنجا که بتن قبل از سخت شدن روان می‌باشد لذا برای شکل دادن به آن احتیاج به قالب داریم.


 
در حال حاضر در بیشتر ساختمان‌ها از قالبهای آجری استفاده می‌شود چون مقرون به صرفه‌تر از قالبهای چوبی است از قالبهای فلزی در کارهای سری سازی استفاده می‌شود. قالب بندی آجری بدین طریق است که پس از بتن مگر اندازه پی‌های اصلی را با آجر چیده و بعد شناژها را به آن نیز متصل می‌نمایند.


ضخامت این آجر چینی می‌تواند 100 سانتی متر هم باشد بهتر است برای این آجر چینی از ملات گل استفاده نمود زیرا در این صورت بعد از سخت شدن بتن می‌توان آجرها را برداشته و مجدداً‌ مورد استفاده قرار داد. ولی در این طریق (دیوار 10 سانتی متری و ملات گل) ممکن است در موقع بتن ریزی دیوارهای قالب تحمل وزن بتن را ننموده و از همدیگر متلاشی شود. که در این صورت می‌باید قبل از بتن ریزی پشت کلیه قالبها با خاک یا آجر و یا مصالح دیگر بسته شود بطوریکه بخوبی بتواند تحمل وزن بتن را بنماید.



مشکل اساسی در این نوع قالب بندی آن است که آجر آب بتن مجاور خود را مکیده و آنرا خشک می‌کند و فعل و انفعالات شیمیایی را در آن متوقف می‌کند و در نتیجه حد اقل به ضخامت 5 سانتی متر بتون مجاور خود را فاسد می‌کند. برای جلوگیری از این کار بهتر است که رویه آجر را با یک ورقه نایلون پوشیده شود تا آجر با بتون آجرها به راحتی از قالب جدا شده و می‌تواند در محلهای دیگر مورد استفاده قرار گیرد به هیچ وجه نباید تصور نمود که قبل از بتن ریزی می‌توان دیوارهای قالب آجری با پاشیدن آب سیراب نموده بطوریکه آجرها آب بتن را نمکد زیرا اولاً‌ با پاشیدن آب آجر کاملاً‌ سیراب نمی‌شود و در ثانی مقدار زیادی آب در قالب جمع می‌شود که خارج کردن آن از قالب بسیار مشکل و حتی غیرممکن می‌باشد و این آب داخل پی جای بتن را گرفته و موجب پوکی قطعه می‌شود. در ساختمان‌های مهم قالب پی‌ها را با چوبهای روسی می‌سازند.
 
بدین طریق که ارتفاع پی‌ها را که روی نقشه مشخص می‌باشد تعیین نموده و با کنار هم گذاشتن تخته‌ها به همان اندازه و اتصال آنها به یکدیگر بوسیله چوبها چهار تراش قالب پی و یا هر قسمت دیگر را می‌سازند باید توجه داشت که تخته‌ها باید آنچنان به یکدیگر متصل باشند که به خوبی بتواند وزن بتن و ضربه‌ها و ارتعاشات بوجود آمده از ویبراتور را تحمل نماید مخصوصاً‌ در مورد شناژها باید تخته را از بالا به وسیله قطعات چوب چهار تراش به یکدیگر متصل نمود به طوری که درزبندی شود که شیره بتن از آن خارج نشود. گاهی مواقع نیز از قالبهای فلزی استفاده می‌شود که قالبهای فلزی به مراتب گرانتر تمام می‌شود.




آرماتور بندی شناژ و فنداسیون


 
آرماتور بندی از حساس‌ترین و با دقت‌ترین قسمتهای ساختمانهای بتنی می‌باشد زیرا همان طوریکه قبلاً‌ گفته شد کلیه نیروهای کششی در ساختمان بوسیله میلگرد‌ها متحمل می‌شوند بدین لحاظ در اجرا آرماتور بندی ساختمان‌های بتنی باید نهایت دقت به عمل آید برای تعیین قطر و تعداد میلگردهای هر قطعه بتنی دو منبع تعیین کننده وجود دارد اول محاسبه دوم آئین نامه در مورد اول مهندس محاسب با توجه به مشخصات قطعه بتنی قطر میلگرد را تعیین نموده و در نقشه‌های مربوطه مشخص می‌نمایند کارگاه آرماتوربندی باید در قسمتی جداگانه از کارگاه اصلی تشکیل گردد.
 
در کارگاههای کوچک آرماتور را با دست (آچار گوساله) خم می‌نمایند ولی در کارگاههای بزرگ خم کردن آرماتور بوسیله ماشین انجام می‌گیرد. مسئول کارگاه آرموتوربندی باید از روی نقشه تعداد و شکل هر آرماتور را تعیین نموده و به کارگران مربوطه داده و خم کردن هر سری را دقیقاً‌ زیر نظر داشته باشد تا طول آرماتور و خم بردن و زاویه خم کردن و طول قلاب ها طبق نقشه انجام

گیرد.


میلگردها باید از نوع ذکر شده در نقشه باشد (آجدار یا ساده(



آرماتور بندی و خم کردن آرماتورها


در کارگاههای کوچک که مصرف کل آرماتورها از 500 تن بیشتر نیست اگر میلگرد خمیدگی موضعی داشته باشد می‌باید این خمیدگی‌ها قبلاً‌ صاف گردد بعد اقدام به شکل دادن آن گردد.
 
برای صاف کردن میله‌ گردها چکش کاری مجاز نمی‌باشد و آرماتورها باید تمیز و در موقع کار فاقد گل و مواد روغنی باشد. میله‌گردهای نمره پایین مثلا‌ً‌ 8 و10 که گاهی به صورت کلافی به کارگاه آورده می‌شود این میلگردها را باید قبلاً‌ به طول‌های مناسب بریده و بوسیله کشیدن صاف نموده و آن گاه مصرف نمود.
 
آرماتورها باید بطوری به هم بسته شود تا در موقع بتن ریزی از جای خود تکان نخورده و جابجا نشود و فاصله آنها از یکدیگر طوری باشد که بزرگترین دانه بتن براحتی از بین آنها رد شده و در جای خود قرار گیرد.
آرماتورها تا قطر 12 میلی متر را می‌توان با دست خم کرد ولی آرماتورهای بزرگتر از 122 میلی‌متر را با دستگاه‌های مکانیکی مجهز به فلکه خم میشود. قطر فلکه خم متناسب با قطر آرماتور بوده و باید بوسیله محاسب کارگاه تعیین گردد. کلیه آرماتورهای ساده باید به قلاب ختم شود ولی آرماتورهای آجدار را می‌توان بصورت گونیا خم کرد. سرعت خم کردن باید متناسب با درجه حرارت محیط باشد و باید با نظر مهندس کارگاه بطور تجربی تعیین شود. باید از خم کردن و باز کردن آرموتورهای شکل داده شده و مصرف آن در محل دیگر خودداری نمود و در مواقع ضروری باید باز کردن هم‌ با نظر مهندس محاسب باشد.

 



وصله کردن آرماتورها


با توجه به این که طول میگرد موجود در بازار 122 متری می‌باشد در اغلب قسمتهای ساختمانها مخصوصاً‌ در شناژها میلگردهایی با طول بیشتر مورد نیاز است و همین طور قطعات باقیمانده از شاخه‌های بزرگ بالاخره بایستی مصرف شوند ناگزیر از وصله کردن میله گردها هستیم بهتر است دقت شود حتی المقدور این وصله‌ها به حداقل خود برسد یعنی در موقع برش کاری طوری اندازه‌ها را باهم جور کنیم که ریزش آرماتورها زیاد نباشد و در صورت اجبار این اتصالات با نظر مهندس ناظر در جایی باشد که تنش‌ها در آنجا حداقل است و باید توجه شود که در یک مقطع کلیه آرماتورها وصله نباشد اتصال دو آرماتور در ساختمان‌های بتن آرمه اغلب به صورت پوششی بوده و باروی هم آوردن دو قطعه انجام می‌شود.
این نوع اتصال برای آرماتور تا نمره 322 مجاز می‌باشد و آن بدین طریق است که دو قطعه آرماتور را کنار هم قرار داده و بوسیله سیم آرموتور بندی به همدیگر متصل می‌گردد. طول دو آرماتور روی هم آمده دو قطعه نبایستی کمتر از اندازه داده شده در نقشه باشد و باید بوسیله مهندس محاسب و ناظر تعیین شود این طول معمولاً‌ به اندازه 40 برابر قطر میل گرد مصرفی است.



آرماتور بندی شناژ- کف شالوده


 
در قطعات تحت خمش و خمش توام با فشار نباید در یک مقطع بیش از نصف آرماتور‌ها وصله‌دار باشد در قطعات تحت کشش و کشش توام با خمش نباید بیش از یک سوم در یک مقطع وصله‌دار باشد.
 
پی‌های نقطه‌ای حداقل باید از دو جهت بوسیله شناژ بتنی به پی‌های همجوار متصل باشد. حداقل ابعاد این کلاف بتنی باید 30 سانتی‌متر بوده و بوسیله 4 میله‌گرد طولی به قطر 12 میلی‌متر مسلح باشد این فولادهای طولی باید با فولادهای عرضی (خاموت) به قطر حداقل 5 میلی‌متر و به فاصله حداکثر 25 سانتی متر به هم دیگر بسته شوند و این قفسه بافته شده شناژ باید در تمام طول پی ادامه پیدا کند و به شناژ طرف دیگر پی متصل باشد. حداقل بتن روی قفسه شناژ 3 سانتی‌متر می‌باشد. فاصله میله گردهای شناژ نباید از 10 سانتی‌متر کمتر باشد و حداقل قطر میله‌گردهای داخل شالوده نباید از 10 میلی‌متر کمتر باشد.
آرماتورهای کف شالوده باید در دو جهت در تمام بعد شالوده ادامه پیدا کند ولی اگر طول پی از 33 متر تجاوز نماید می‌توان آرماتورها را یک در میان کوتاهتر اختیار نمود ولی طول آرماتورهای کوتاه شده نباید از 8/0 طول اصلی کمتر باشد.

آرماتور بندی ریشه ستون 


 
آرماتورهای ریشه با انتظار با ریشه برای اتصال شالوده به ستون بکار می‌رود باید تا سطح آرماتورهای زیرین پی ادامه داشته ادامه داد وبقیه آرماتورهای ستون را با اندازه 40 سانتی متر داخل پی نمود کلیه آرماتورهای ریشه باید در انتها دارای خم 90 درجه باشد

.
 
این آرماتورها باید بوسله خاموت به یکدیگر متصل شده و داخل پی بخوبی مستقر شود و یا به عبارت دیگر باید خاموت‌های ستون تا داخل پی ادامه یابد. طول آن قسمت از آرماتورهای ریشه که باید خارج از پی قرار گیرد تا میله‌گردهای ستون به آن بسته شود باید بوسیله مهندس محاسب تعیین گردد ولی هیچ گاه نباید از 60 تا 50 سانتی متر کمتر گردد. اگر نتیجه محاسبات بیش از اعداد داده شده باشد باید از اعداد به دست آمده بوسیله محاسبات استفاده شود.
 
برای ایجاد مقاومت در مقابل نیروهای کششی در بتن داخل شناژ چند ردیف در بالا و پایین میله‌گرد طولی قرار می‌دهند و این آرماتور بندی شناژ میلگردهای طولی را به وسیله میلگردهای عرضی که به آن خاموت گفته می‌شود به همدیگر متصل می‌نمایند. میله گرد‌های طول و عرضی را قبلاً‌ مطابق شکل می‌بافند و بعد در داخل قالب‌بندی شناژ قرار می‌دهند باید توجه داشت پهنای این قفسه بافته شده باید در حدود 5 سانتی‌متر کوچکتر از پهنای این قفسه بافته شده باشد باید هر طرف 5/2 سانتی‌متر باشد به طوریکه این میلگردها کاملاً‌ در بتن غرق شده و آنرا از خوردگی در مقابل عوامل جوی محفوظ نماید. این اندازه در مناطق مختلف و آب و هوای مختلف و همچنین محل قرار گرفتن قطعه بتنی (اینکه درون زمین و یا خارج آن) قرار گیرد ونیز میزان سولفاته بودن آبهای مجاور آن متفاوت است که میزان آن بوسیله موسسه استاندارد و تحقیقات صنعتی ایران تعیین شده است. ناگفته نماند که خاموتهای شناژ اکثراً به صورت مربع و چهار ضلعی است چون چهار عدد میلگرد در داخل شناژ قرار می‌گیرد.

نکته :

ناگفته نماند که فاصله بین خاموتها در ریشه ستون به مراتب کمتر از جاهای دیگر ستون می‌باشد. چون ریشه باید یکپارچگی ومقاومت بیشتری باشد یا به عبارت دیگری در یک ششم طول بالا که ستون به سقف متصل می‌شود فواصل بین خاموتها کمتر از جاهای دیگر ستون می‌باشد که این فاصله از روی نقشه خوانده می‌شود. که توسط مهندس محاسب محاسبه می‌شود ولی تقریباً‌ حدود 15 سانتی‌متر می‌شود ولی در جاهای دیگر ستون حدود 25 سانتی‌متر می‌باشد.
 
قبل از بتن ریزی باید حتماً‌ یک بار دیگر فاصله محور آرماتورهای ریشه کنترل گردد کف پی ‌و آرماتورها کنترل گردد و مواد زائد از آن خارج شود. بست‌های اتصال باید کنترل گردد و در مواقع قالب برداری دقت شود تا بتن تازه ریخته شده شالوده آسیب نبیند و قالب‌ها تکه تکه و به آرامی جدا شود. اگر از قالب آجری استفاده شود و ورقه نایلون روی آجر کشیده نشده است بهتر است از آجرها صرف نظر شود و اقدام به برداشت آجرها نمائیم زیرا در این صورت آجر به بتن کاملاً‌ چسبیده و جدا کردن آن غیر ممکن است و اگر قبل از سخت شدن بتن بخواهیم آجرها را جدا کنیم حتماً‌ به پی آسیب خواهد رسید.


چگونه شبکه میل گرد ستون را به ریشه متصل کنیم؟


 
بعد از اجرای فنداسیون و گذاشتن میله گردهای ریشه اگر بخواهیم میله‌گردهای ستون را کنار میله‌گردهای ریشه قرار دهیم به اندازه کلفتی میله گرد ریشه ستون از محور خود منحرف خواهد گردید که اگر لاین انحراف در طبقات بالا تماماً‌ در یک جهت باشد ممکن است ستون طبقه پنجم یا ششم چندین سانتی‌متر تغییر مکان کند بدین لحاظ باید سعی شود که این تغییر مکان در هر طبقه بر خلاف تغییر مکان طبقه پایین‌تر باشد .بهتر آن است که در آرماتورهای ستون انحنای کوچکی مطابق کل شکل ایجاد گردد آن گاه نسبت به اتصال شبکه میلگردش ستون به ریشه اقدام گردد تا ستون درست در محل خود جای بگیرد و کوچکترین انحرافی نداشته باشد این انحراف به اندازه قطر میلگرد می‌باشد.

 گاهی مواقع در آرماتوربندی فنداسیون اتفاق می‌افتد که شبکه بندی میله‌گردها هم در کف فنداسیون و هم در قسمت فوقانی فنداسیون شبکه‌هایی وجود دارد.


 
این زمانی اتفاق می‌افتد که دو ستون با هم روی یک فنداسیون قرار گرفته باشد یعنی در محل فنداسیون درز انقطاع دو ساختمان، دلیل این شبکه‌ها در قسمت فوقانی برای تحمل کشش در آن ناحیه یعنی بین دو ستون می‌باشد . چون دو ستون نیروی زیادی را به فنداسیون وارد می‌کند و نیروی کششی در بالای و فاصله بین دو ستون ایجاد می‌شود که برای تحمل این نیروی کششی از میلگردهای لازم استفاده می‌شود


 
گاهی مواقع اتفاق می‌افتد که فنداسیون‌های مسلح نواری که دو یا چند ستون روی آن سوار می‌شود و حالت باسکولی دارد و هم میل‌گردهایی جهت تقویت در جاهایی که کشش خیلی زیاد است هم در کف و هم در بالای فنداسیون از میله‌گردهای نمره بالا 24-26 استفاده می‌‌کنند البته این میلگردها به صورت تقویتی است و باید در بین شبکه میلگردها قرار گیرد و به شبکه نچسبد .
بتن سازی و بتن ریزی


 
برای بتن ریزی فنداسیون و شناژها باید بتن را طبق آئین نامه بسازیم. بتن سنگی است مصنوعی که از مواد سنگی (شن وماسه) و آب وسیمان تشکیل یافته و به علت روانی قالب خود را پر کرده وبه شکل قالب در می‌آید.


مصالح سنگی


مصالح سنگی که در بتن مصرف می‌شود شن و ماسه می‌باشد که در حدود 755% حجم بتن را تشکیل می‌دهد. دانه‌های سنگی تا بزرگی 5 میلی‌متر بزرگتر را شن می‌گویند. قسمت اعظم مقاومت بتن بستگی به مقاومت شن و ماسه دارد و در نتیجه بایستی در انتخاب معادن شن و ماسه جهت بتن ریزی نهایت دقت به عمل آید.

دانه‌های نامطلوب از نظر شکل


 
هر قدر شکل دانه‌ها هندسی‌تر باشد برای بتن ریزی مناسب‌تر می‌باشد. وجود دانه‌های سوزنی و یا پولکی شکل در بتن مناسب نیست و مجموع این دانه‌ها نباید از 15% وزن کل شن و ماسه مورد مصرف در بتن بیشتر باشد دانه‌های سوزنی به دانه‌هایی گفته می‌شود که طول بزرگترین بعد آن از 8/1 معدل دو الکی که این دانه‌ها بین آنها قرار دارد بیشتر باشد دانه‌های سوزنی به علت آن که زودتر از سایر دانه‌ها می‌شکنند نامطلوب می‌باشند. دانه‌های پولکی شکل به دانه هایی گفته می شود که ضخامت کمترین بعد آن کوچکتر از 60 % اندازه متوسط الکی که دانه سنگی به آن تعلق دارد .

مواد نامطلوب در شن و ماسه و اندازه دانه‌ها


 
بطور کلی شن و ماسه شکسته اغلب فاقد مواد نامطلوب می‌باشد ولی در مورد شن و ماسه رودخانه باید توجه داشت که مواد آلی مانند ریشه گیاهان- فضولات حیوانی- تکه‌های چوبی و فلزات و ذرات ذغال سنگ در شن و ماسه وجود نداشته باشد و یا حداکثر میزان آن از یک درصد وزن شن و ماسه تجاوز نکند. موادی که در برابر عوامل جوی ضعیف بوده و یا در فعل و انفعالات شیمیایی سیمان از خود واکنش نشان ندهند. مواد نامبرده نباید در شن و ماسه وجود داشته باشد درصد این مواد بوسیله آزمایشگاهها تعیین می‌شود و هم چنین مواد سنگی مصرفی در بتن باید فاقد خاک رس و کلوخه‌های رس باشد زیرا اولاً‌ آب داخل بتن را به خود جذب کرده و فعل و انفعالات شیمیایی سیمان را متوقف می‌کند در ثانی دور دانه‌های شن و ماسه را گرفته ومانع تماس مستقیم سیمانه و دانه‌ها می‌گردد.


آب در بتن:

  1. سیمان در مجاورت آب شروع به فعل و انفعالات شیمیایی نموده و تشکیل سیلیکاتها و آلومیناتها کلسیم متبلور می‌‌دهد که اساس گرفتن و سخت شدن بتن می‌باشد. این مقدار در حدود 20 الی 25 درصد وزن سیمان می‌باشد.
  2. آب سطح دانه‌های سنگی را تر نموه و باعث لغزش این عناصر به روی یکدیگر می‌گردد بدیهی است هر قدر سطح دانه‌ها بیشتر باشد آب بیشتری در این قسمت مصرف می‌شود به همین علت مقدار این آب متفاوت بوده و در حدود 25% وزن سیمان می‌باشد.
  3. آب باعث روان شدن بتن می‌گردد تا بهتر بتوان آن را حمل نموده و در قالب ریخته و آنرا به شکل قالب در آورد.

بدیهی است فقط آب قسمت اول در بتن باقی می‌ماند و آب قسمت دوم به مرور تبخیر گشته و جای آن به صورت فضای خالی ممکن است به صورت فضای خالی که ممکن است به صورت تارهای موئین باشد در بتن باقی بماند که این خود باعث پوکی بتن گشته و موجب تضعیف بتن می‌گردد.


 
باید توجه داشت که هر قدربتن خشکتر باشد مقاوم‌تر خواهد بود ولی بتن‌های خیلی خشک به علت لغزنده نبودن کاملاً‌‌ قالب را پر نکرده و در داخل آن فضای خالی بوجود آمده و در نتیجه قطع نمی تواند بار وارده را تحمل نموده و غیر قابل استفاده می‌گردد و

چنین می توان گفت که بتن تازه باید مانند عسل باشد


آب در بتن


 
با توجه به این که در اغلب کارگاههای کوچک و حتی در بعضی از کارگاهها تقریباً‌ بزرگ امکان تجزیه آب از لحاظ شیمیایی موجود نیست لذا به طور کلی می‌توان گفت که تقریباً‌ آبی که فاقد بو ومزه و ظاهراً‌ قابل آشامیدن باشد می‌توان در بتن از آن استفاده کرد. البته این موضوع دلیل آن نیست که آبهای غیر آشامیدنی برای بتن مضر است. در مواردی که آب آشامیدنی برای بتن در دسترس نباشد می‌باید مقاومت مکعب 28روزه بتن حد اقل 90 درصد مقاومت مکعبی را که با آب آشامیدنی ساخته شده است را دارا باشد در این صورت می‌توان مطمئن شد که ناخالصی‌های آب بر آب بتن مضر نیست.

اثر ناخالصیهای آب بر روی بتن

 

 سنگ‌های سدیم و پتاسیم و منیزیم محلول در آب در فعل و انفعالات شیمیایی سیمان موجود در بتن شرکت کرده و در اثر انبساط حجمی موجب خرد شدن الیاف قطعه بتنی می‌گردد. این خرابی در قطعاتی که در جریان آب سولفاته قرار دارند. بیشتر می‌باشد. اثر نمک بر روی بتن ابتدا به صورت شوره ظاهر گشته و بعد از مدتی موجب خرد شدن قطعه می‌گردد.
 
کانالهای هدایت فاضلاب‌های کارخانه و هم مواد روغنی و نفتی در اثر تماس با دانه‌ها و فولاد موجود در بتن سطح آب را چرب نموده و مانع چسبیدن دوغاب سیمان به دانه‌ها و چسبیدن دانه‌ها به یکدیگر می‌گردد.


سیمان


سیمان واژه لاتینی است که از کلمه Caementun و یا Caedimentunn گرفته شده و معنی آن خرده سنگ است. سیمان ماده چسبنده است به رنگ خاکستری که در مجاورت آب و در مجاورت هوا و بعضی از انواع بدون مجاورت هوا در اثر فعل و انفعالات پیچیده شیمیایی سخت گشته و قطعات خرده سنگ مجاور خود را به یکدیگر می‌چسباند.
 
برای اولین بار سیمان در انگلستان بوسیله شخصی کشف گردید وچون رنگ آن بعد از خشک شدن به رنگ سنگهای ساحلی جزیره پرتلند بود بنام سیمان پرتلند معروف گردید سیمان پرتلند معروف‌ترین و رایج‌ترین سیمان در دنیا است.
مواد متشکله پرتلند : سیمان پرتلند تشکیل شده است از 65% آهک CaO و حدود 200% سیلیس به فرمول SiO2 و حدود 6% اکسید آلومینیوم به فرمول: AL2O3 و حدود 4% اکسید منیزیم به فرمول 
MgO
و 3% آنیدرید سولفوریک به فرمول SO33 و دو سه درصد دیگر نیز مواد دیگر که فرمول و نسبت دقیق این مواد در کارخانه‌های مختلف متفاوت است. این مواد را به نسبت‌های معین و دقیق مخلوط کرده و به دو طریق خشک و یا ترد در کوره سیمان‌پزی برده و آنرا می‌پزند.



سیمان پزی 


 
پختن سیمان یعنی ایجاد فعل و انفعال شیمیایی بوسیله حرارت بین مواد متشکله آن تا مواد بصورت دانه‌هایی به درشتی فندق در اید به این دانه‌ها که در اثر حرارت تشکیل می‌شود در اصطلاح سیمان‌پزی کلینکر می‌گویند.



انبار کردن سیمان


 
در موقع انبار کردن سیمان باید دقت شود که رطوبت هوا و زمین باعث فاسد شدن سیمان نشود. بدین لحاظ باید انرا روی قطعاتی از تخته که با زمین در حدود 10 سانتی‌متر فاصله دارد و تعداد کیسه‌های سیمان روی هم قرار می‌گیرد نباید از 10 الی 12 کیسه بیشتر باشد زیرا در غیر این صورت سیمان‌های زیرین در اثر فشار سخت شده و غیر قابل مصرف می‌گردد.

چنانچه این قطعات سخت شده به راحتی با دست به صورت پودر در اید قابل مصرف در قطعات بتنی می‌باشد و در غیر این صورت سیمان فاسد شده و بتن ساخته شده با این نوع سیمان باربر نبوده و نمی‌توان از آن در قطعات اصلی ساختمان مانند تیرها وستونها

و سقفها استفاده نمود.


 
اگر بخواهیم سیمان را برای مدت طولانی انبار کنیم باید حتی‌المقدور باید با دیوارهای خارجی انبار فاصله داشته باشد و روی آنرا با ورقه‌های پلاستیکی پوشانیده شود تا حتی المقدور از نفوذ رطوبت به آن جلوگیری به عمل آید. اگر سیمان به طرز صحیح انبار شود حتی تا یکسال بعد نیز قابل استفاده است فقط ممکن است زمان گیرش آن به قدری به تعقیب افتد ولی اثری در مقاومت 28

روزه آن ندارد.


 
گاهی مواقع در برخی از کارگاهها که سیمان زیاد مصرف می‌شود سیمان را در سیلوها نگهداری می‌کنند یعنی سیمان را به صورت فله‌ای خریداری نموده و در سیلو انبار می‌کنند و هر گاه کارگران به سیمان احتیاج داشته باشند از این سیلوها استفاده می‌کنند.



نسبت‌های مخلوط کردن اجزای بتن


 
منظور از نسبت‌های مخلوط کردن اجزای بتن آن است که نسبت مناسبی برای اختلاط شن و ماسه و سی به دست آوریم تا دانه‌های ریزتر فضاهای بین دانه‌های درشتتر را بپوشاند وجسم توپری بدون فضای خالی و با حداکثر وزن مخصوص به دست آید. هم چنین تعیین مقدار آب لازم به طوریکه بتن به راحتی قابل حمل و نقل بوده و در قالب خود جا گرفته و دور میله‌گردها را احاطه نموده و کلیه فضای خالی قالب را پر نماید و در مجاورت آن فعل و انفعالات شیمیایی سیمان شروع شده و تا مرحله سخت شدن ادامه یابد و بالاخره تعیین مقدار سیمان مورد لزوم برای به دست آوردن بتن با مقاومت کافی که بتواند به راحتی بارهای وارده ساختمان را تحمل نماید.


 
مقاومت بتن با افزایش سیمان بالا می‌رود حداکثر سیمانی که آئین‌نامه‌های مختلف برای بتن مجاز دانسته‌اند 400 کیلوگرم سیمان در متر مکعب شن و ماسه می‌باشد و چنین معتقدند که اگر مقدار سیمان از 400 کیلوگرم بیشتر باشد جای مصالح سنگی را می‌گیرد و بجای قطعات سنگی که مقاومت بیشتری دارند قطعات سیمانی خواهیم داشت. در نتیجه باعث ضعف قطعه بتنی می‌گردد البته مقدار سیمان به ریزی و درشتی دانه‌های مصرفی دارد هر قدر دانه‌های مصرفی ریزتر باشد در نتیجه سطح مخصوص دانه‌های زیادتر باشد به سیمان بیشتری نیاز داریم زیرا فرض بر این است که دوغاب سیمان مانند پوشش نازکی دور تا دور دانه‌ها را آغشته کرده و آنها را به یکدیگر می‌چسباند. بعضی آئین‌نامه‌ها حداکثر سیمان مصرفی در بتن را 350 کیلوگرم در یک متر مکعب شن و ماسه پیشنهاد می‌کنند . مثلاً‌ وقتی می‌گویند بتن 300 یعنی بتنی که در هر متر مکعب شن و ماسه آن 300 کیلوگرم

سیمان مصرف شده است.


بتن سازی روشهای مختلفی دارد مانند روش زیر:


بتن سازی


1
بتن سازی با دست


 
روش دستی ساده‌ترین روش و ابتدایی‌ترین روش برای تهیه بتن است که جز در مواقع اضطراری و برای تهیه بتن‌های کم اهمیت و یا لکه‌گیری ویا کارهای متفرقه جزئی؛ مجاز نمی‌باشد.


 
در این روش کار مخلوط کردن را باید روی سطح تمیزی انجام داد و برای این کار می‌توان با چسبانیدن تخته‌های چوبی به یکدیگر یک سطح صاف ایجاد نموده و قبل از شروع کار باید این سطح چوبی را در وضعیت افقی محکم نموده و آنرا کاملاً‌ خیس نمائیم تا آب بتن تازه بوسیله چوب مکیده نشود.


 
هم چنین هر چه درزهای چوب‌ها به یکدیگر محکمتر چسبیده باشند تا شیره بتن خارج نشود بهتر است. ابتدا مقدار ماسه لازم را روی کف ریخته شده و بعد بر روی آن مقدار معینی سیمان اضافه می‌گردد. کمی بر روی آن شن افزوده کرده و قبل از افزودن آب مصالح را خوب بصورت خشک بهم زده و با هم مخلوط می‌کنیم تا مخلوط رنگ یکنواختی به خود بگیرد سپس آب لازم را به آن اضافه می‌کنیم.


بهم زدن مخلوط را ادامه می‌دهیم. یک کارگر خوب حداکثر می‌تواند حجمی معادل یک متر مکعب بتن را ظرف یک ساعت مخلوط کند.



2
بتن سازی با بتونیر


 
این دستگاه شامل یک محفظه متحرک و دیگ گردان یا مخلوط‌کن مصالح می‌باشد. اغلب بتونیرها خود دارای پیمانه آب بوده ومحفظه متحرک آنها که مصالح را به درون دیگ گردان هدایت می‌کند بوسیله سیستم کابلی یا جکهای هیدرولیکی به حرکت در می‌آیند. این دستگاه را می‌توان در محلی نزدیک محل اصلی‌ بتن ریزی مستقر نموده و برای تغذیه آن محل دپوی مصالح ومخزن آب را در مجاورت آن در نظر گرفت. مساله مهم در مورد این دستگاه‌ها تنظیم پیمانه برای نسبت‌های لازم مصالح تشکیل دهنده می‌باشد.



3
تراک میکسر


 
دستگاه بتن سازی که بر روی کامیون قرار دارد و به این ترتیب دارای تحرک کامل می‌باشد. از تراک میکسر به منظور حمل بتن استفاده می‌شود تا ساخت بتن ولی می‌توان مصالح مخلوط شده را داخل آن ریخت تا در طول راه بتن ساخته شود.
 
اما معمول آن است که بتن کاملاً‌ ساخته شده را از دستگاه بتن‌ساز مرکزی به داخل تراک میکسر می‌ریزند تا به محل بتن‌ریزی حمل شود و تراک میکسر مخلوط بتن را در طول راه بهم می‌زنند تا بتن خود را نگیرد و به صورت آماده به محل کار برسد.

4)
دستگاه بتن سازی

(Central Eatching Plant)


 
روش دیگر و پیشرفته تر تهیه بتن بویژه در پروژه‌های بزرگ و با اهمیت، استفاده از دستگاه بتن مرکزی می‌باشد . مصالح سنگی (شن و ماسه) در اندازه‌های مختلف در محفظه‌های پشت این دستگاه انبار می‌شوند و سپس با کنترل از اطاق فرمان، بوسیله بیل کششی به قسمت توزین هدایت می‌شود. سپس مصالح به مقدار مورد نیاز وزن شده داخل دیگ گردان شده و در این مرحله سیمان نیز از محفظه مربوطه به داخل دیگ رانده شده و با افزودن آب دیگ شروع به چرخش ومخلوط کردن مصالح می‌نماید.

روشهای حمل بتن:


 
بتن ساخته شده توسط دستگاههای بتن ساز و بر حسب فاصله تا محل مصرف و یا نوع سازه مورد نظر یا وسائل و دستگاههای خاص به آن محل منتقل می‌شود. در ذیل به شرح تعدادی از روشهای حمل می‌پردازیم:

  1. فرغان و گاری دستی
  2. دامپر:
     
    نظیر گاری حمل بتن می‌باشد با این تفاوت که دارای موتور متحرک است و با آن می‌توان تا فواصل بالنسبه دورتری بتن را حمل کرد.
  3. جرثقبل و باکت:
    هنگامیکه احتیاج به حمل بتن در ارتفاع باشد بیشتر از این متد استفاده می‌شود.
     
    معمولاً‌‌در کارگاههای ساختمان‌های بتنی مهم استفاده از جرثقیل به علت نیاز به جابجایی قالب و شبکه‌های آرماتور اجباری است و در صورت وجود چنین جرتقیلی استفاده از آن برای حمل بتن، منطقی و اقتصادی به نظر می‌رسد ظرفیت باکت‌ها تا 2 متر مکعب بوده و معمولاً‌‌ به شکل مکعبی یا استوانه‌ای می‌باشد و بتن داخل باکت یا از دریچه‌ای که از زیر آن تعبیه می‌گردد یا باکت به صورت قیچی باز می‌شود.
  4. تسمه نقاله:
     
    از این متد بیشتر در مواقعی‌ای که نیاز به جابجایی افقی بتن می‌باشد استفاده می‌شود و بطور معمول تا شیب‌های 15 درجه نیز مورد استفاده قرار می‌گیرد.

 

 

 

بتن ریزی و متراکم کردن آن

 بتن ریزی باید طبق اصول صحیح انجام گیرد و شرایط مناسب برای گرفتن بتن فراهم کرد. در بتن ریزی صحیح ملات ماسه سیمان دور دانه‌های بتن را می‌پوشاند و جسمی توپر بدست می‌آید و بتن حجم قالب را کاملاً‌ پر می‌کند و فضای خالی باقی نمی‌ماند.

 قبل از اینکه بتن در محل مورد نظر ریخته شود؛ داخل قالبها بایستی به دقت مورد بررسی قرار گیرد تا این که اطمینان حاصل شود که قالبها تمیز بوده و از طرفی به مواد روغنی مناسبی آغشته شده باشند تا بتن به سطح قالب نچسبد. و ظاهر بتن صاف در آید و علاوه بر این از قالب بتوان بدفعات بیشتری از آن استفاده نمود.
 
مواد نظیر خاک؛ گرد و خاک باید بوسیله جریان هوای فشرده از درون قالبها تمیز گردد. وقتی ارتفاع قالبها زیاد باشد باید دریچه‌های اضطراری در جهت این بازدیدها تعبیه گردد. بتن را قبل از اینکه سخت شود و اثر کارپذیری آن کم شود باید در محل نهایی خود ریخت.


در بتن ریزی باید به نکات زیر توجه نمود


 
بتن را باید در لایه‌های افقی در جای خود ریخت و نباید آن را با ویبره کردن و هل دادن جابجا کرد. ضخامت هر لایه بتن بستگی به نوع کار بین 15 تا 60 سانتی‌متر در قطر می گیرند و لایه بعدی را پیش از این که لایه زیرین شروع به گرفتن کند باید روی آن ریخت. اغلب به منظور تسریع در کار، بدون توجه به اختلاف ارتفاع بتن را به داخل قالب می‌ریزند در صورتیکه از این کار باید اجتناب کرد و بتن را نباید از ارتفاعی بیش از 1 تا 1.5 متر خالی کرد مگر آن که از ناودان و لوله قیف یا شوتینگ استفاده شود.

با به کار گرفتن روشهای صحیح خالی کردن بتن در قالب می‌توان از جدا شدن دانه‌ها جلوگیری کرد. باید حتی المقدور سعی شود که بتن در جای خود ریخته شود و از جابجایی بیهوده آن خودداری گردد. بتن ریخته شده در قالب را نباید به صورت افقی به این طرف و آن طرف کشانید و از جابجایی آن به کمک ویبراتور و هل دادن آن جدا خودداری کرد و باید دقت شود که اطراف میلگردها و گوشه‌های قالب خالی نماند و از بتن پر شود . بتن ریزی در سطح شیب‌دار همیشه باید از پایین سطح شیب‌دار شروع و به طرف بالا ادامه یابد. همچنین باید طوری بتن ریزی شود که به جابجایی دانه‌ها منجر نشود. همه بتن‌ها را باید پس از ریختن متراکم نمود تا میزان هوای اضافی به حداقل برسد. در بتن‌های کم اهمیت برای متراکم کردن آن می‌توان از وسایل دستی مناسب استفاده کرد ولی استفاده از وسایل لرزاننده مکانیکی (ویبراتور) ارجحیت دارد و استفاده از ویبراتور در جهت هر چه متراکم‌تر نمودن مخلوطهایی با کارپذیری کم ضروری است. ویبراتور دستگاهی است که به شیلنگ بلندی ختم می‌شود و این شیلنگ بوسیله موتور برقی یا بنزینی مرتعش می‌شود که با قرار دادن این شیلنگ در داخل بتن آنرا مرتعش می‌کند وباعث هدایت آن به تمام گوشه‌های قالب

می‌گردد.


 
با توجه به این که ویبره کردن بیش از حد بتن باعث می‌شود که دانه‌های ریزتر و شیره بتن بالا آمده و دانه‌های درشت‌تر به ته قالب هدایت شود که این خود باعث مجزا شدن اجزاء بتن گردیده و موجب ضعف قطعه ریخته شده خواهد شد بهتر است که در ضمن ویبره کردن بتن بوسیله ضربه زدن به بدنه قالب و کوبیدن خود به بتن انرا بخوبی متراکم نموده و نقاط تجمع هوا و فضای خالی را به خوبی پرنماییم.


 
اگر بتن را ویبره می‌نماییم باید زمانی که شیلگ ویبراتور داخل بتن قرار می‌گیرد به دفعات بوده و هر بار از یک دقیقه تجاوز نکند و بعد از یک دقیقه باید آنرا بخوبی در بتن جابجا کنیم.


نوع دیگر ویبراتورها ویبراتور خارجی می‌باشد که قالب را به ارتعاش در می‌آورد. از این ویبراتورها به ندرت استفاده می‌شود زیرا ارتعاش و تنشهای حاصل از این ویبراتورها بر روی قالبها استفاده از آنها محدودیت ایجاد می‌کند فقط در مواردیکه یک امکان استفاده از ویبراتورهای داخلی موجود نباشد مثل دیوارهای با آرماتوربندی سنگین و ویبراسیون نمی‌توان بتن‌های دارای کارپذیری بتن 5/2 تا 5 سانتی‌متر را متراکم نمود و از طرفی اگر کارپذیری مخلوطی بیان 12 تا 15 سانتی‌متر باشد نباید آنرا ویبره کرد.
 
تا آنجا که امکان دارد بهتر است بتن‌ریزی بدون وقفه انجام گیرد بطوریکه در موقع سخت شدن یکپارچه شود ولی نظر به این که این کار همیشه ممکن نیست و گاهی مجبور هستیم که بتن ریزی را تعطیل کنیم و کار را در روز دیگر انجام دهیم در چنین مواقعی می‌باید محل قطع بتن حتماً‌ با نظر مهندس ناظر باشد زیرا محل قطع بتن باید در جایی باشد که نیروهای وارده صفر بوده و یا حداقل نیروی برشی در آن محل کم باشد.
 
در ضمن باید چند عدد ولاد کمکی در مقطع گذاشته شود به طوری که نصف طول این میلگردها در بتن و نصف باقی مانده آن بایستی شسته شده و از گرد و خاک و مواد اضافی پاک گردد. آنگاه باید با قدری دوغاب سیمان خالص محل را اندود کرده و آنگاه بتن ریزی جدید را شروع نماییم و بهتر است حتی المقدور از مصرف چسب و هرگونه مواد دیگر در بتن خودداری کرد.

نگهداری بتن


 
سیمان موجود در بتن ریخته شده در مجاورت رطوبت باید سخت ده و دانه‌های سنگی موجود در مخلوط به همدیگر چسبانیده و مقاومت بتن به حداکثر برساند بدین لحاظ می‌باید از خشک شدن سریع بتن جلوگیری نموده و از تابش آفت

۱- ماده اصلی بتن که شن و ماسه می‌باشد ارزان و قابل دسترسی است.

۲- سازه‌های بتنی که مطابق با اصول آیین نامه‌ای طراحی و اجرا شده اند، در مقابل شرایط محیطی سخت، مقاومتر از سازه‌های ساخته شده با مصالح دیگر هستند.

۳- به علت قابلیت شکل پذیری بالای بتن، امکان ساخت انواع سازه‌های بتنی نظیر پل، ستون و به اشکال مختلف میسر است.

 ۴- سازه‌های بتنی در مقابل حرارت زیاد ناشی از آتش سوزی بسیار مقاوم اند. آزمایشات نشان داده اند که در صورت ایجاد حرارتی معادل ۱۰۰۰ درجه سانتی گراد برای یک نمونه بتن آرمه، حداقل یک ساعت طول می‌کشد تا دمای فولاد داخل بتن، که با یک لایه بتنی با ضخامت ۲٫۵ سانتی متر پوشیده شده است، به ۵۰۰ درجه سانتی گراد برسد.

روش‌های طراحی سازه‌های بتن آرمه

به طور کلی هدف از طراحی یک سازه، تامین ایمنی در مقابل فروریختگی و تضمین عملکرد مناسب در زمان بهره برداری است. چنانچه مقاومت واقعی یک سازه بطور دقیق قابل پیش بینی بود و در صورتی که بارهای وارد بر سازه و اثرات داخلی آنها نیز با همان دقت قابل تعیین بودند، تامین ایمنی تنها با ایجاد ظرفیت باربری به میزان جزئی بیش از مقدار بارهای وارده ممکن می گشت. لیکن عوامل نامشخص و خطاهای احتمالی متعددی در آنالیز، طراحی و ساخت سازه‌ها وجود دارند که یک حاشیه ایمنی را در طراحی سازه‌ها طلب می‌کنند.

 

 

مهمترین ریشه‌ها و منابع این خطاها عبارتند از:

1- بارهایی که در عمل به سازه وارد می‌شوند و همچنین توزیع واقعی آنها ممکن است با آنچه در بارگذاری سازه فرض شده است متفاوت باشند.

2- رفتار واقعی سازه ممکن است با رفتار تئوریک سازه، که بر اساس آن نیروهای داخلی اعضا محاسبه می‌شوند، تفاوت داشته باشد.

3- مقاومت واقعی مصالح به کار رفته در ساخت سازه ممکن است متفاوت از مقادیر فرض شده در محاسبات باشد.

4- ابعاد قطعات و محل واقعی میلگردها ممکن است دقیقاً مطابق آنچه طراح در محاسبات خود فرض کرده نباشد.

بنابراین، انتخاب یک حاشیه ایمنی مناسب امر بسیار دشواری است که نحوه منظور نمودن آن، به صورت یکی از مشخصه‌های اساسی روش‌های طراحی در آمده است. به طور کلی طراحی سازه‌های بتن آرمه به سه روش زیر صورت می‌گیرد:

۱- تنش مجاز

۲- مقاومت نهایی

۳- روش طراحی بر مبنای حالات حدی

 

این روش که قبلاً روش تنش بهره برداری یا روش تنش بار سرویس نامیده می‌شد، اولین روشی است که بصورت مدون برای طراحی سازه‌های بتن آرمه بکارگرفته شد. در این روش یک عضو سازه‌ای به نحوی طراحی می‌شود که تنش‌های ناشی از اثر بارهای بهره برداری (یا سرویس)، که به کمک تئوری‌های خطی مکانیک جامدات محاسبه می‌شوند، از مقادیر مجاز تنش‌ها تجاوز نکنند. منظور از بارهای بهره برداری یا سرویس بارهایی نظیر: بار زنده، بار مرده، بار برف و بار زلزله هستند. این بارها توسط آیین نامه‌های بارگذاری، مانند آیین نامه ۵۱۹ موسسه استاندارد و تحقیقات صنعتی ایران تعیین می‌شوند. در این روش منظور از تنش مجاز تنشی است که از تقسیم تنش حدی ماده، نظیر مقاومت فشاری برای بتن و مقاومت تسلیم برای فولاد، بر ضریب بزرگتر از واحد، به نام ضریب اطمینان به دست می‌آید. تنش‌های مجاز مصالح توسط آیین نامه‌های محاسباتی تعیین می‌شوند. به عنوان مثال مطابق آیین نامه ACI مقدار تنش فشاری مجاز بتن f ‘ c ۰٫۴۵می باشد.

بدین ترتیب مراحل این روش بطور خلاصه به ترتیب زیر هستند:

۱- تعیین بارهای وارد بر سازه

۲- آنالیز سازه و تعیین تنش‌ها در مقاطع مختلف به کمک تئوری‌های کلاسیک اجسام الاستیک

۳- تعیین تنش‌های مجاز با استفاده از یک آیین نامه محاسباتی

۴- طراحی نهایی مقطع با این محدودیت که در هیچ نقطه‌ای از سازه تنش‌های ایجاد شده از تنش‌های مجاز تجاوز نکنند.

این روش به دلیل سادگی و سهولت کاربرد تا چندی قبل به عنوان قابل استفاده‌ترین روش طراحی سازه‌های بتن آرمه مطرح بود. لیکن نقاط ضعف این روش استفاده از آن را محدود کرده است.

 

مهمترین این نقاط ضعف عبارتند از:

1- در این روش ایمنی به کمک تنها یک ضریب (ضریب اطمینان) و در یک مرحله منظور می‌شود، از آنجا که عواملی که لزوم تامین یک حاشیه ایمنی را ایجاب می‌کنند دارای ریشه‌ها و شدت‌های متفاوت هستند، در نظر گرفتن آنها تنها با کمک یک ضریب غیر منطقی است.

    2- بتن ماده‌ای است که تنها تا تنش‌های معادل نصف مقاومت فشاری آن به صورت الاستیک و خطی عمل می‌کند. بنابراین با بکار بردن درصدی از مقاومت فشاری بتن در محاسبات نمی‌توان اطلاعی از ضریب اطمینان کلی سازه در مقابل فروریختگی به دست آورد.

3- به کار بردن این روش در طراحی بعضی مقاطع با اشکالات تئوریک مواجه است. به عنوان مثال در مقاطع خمشی تنش واقعی فولاد غالباً کمتر از مقداری است که با این روش محاسبه می‌شود.

تا سال ۱۹۵۶ میلادی روش تنش‌های مجاز مبنای محاسبات در آیین نامه ACI بود. این روش از سال ۱۹۷۷ تنها در قسمت ضمائم آیین نامه و تحت عنوان روش دیگر طراحی جا داده شد.

روش مقاومت نهایی که در آیین نامه ACI به نام روش طراحی بر مبنای مقاومت موسوم است، حاصل مطالعات گسترده روی رفتار غیر خطی بتن و تحلیل دقیق مسئله ایمنی در سازه‌های بتن آرمه می‌باشد. روند طراحی در این روش را می‌توان به صورت زیر خلاصه نمود:

1- باربهره برداری به وسیله ضریبی موسوم به ضریب بار افزایش داده می‌شود، بار حاصله را اصطلاحاً بار ضریبدار یا بار نهایی می نامند.

    2- بارهای ضریبدار بر سازه اعمال می‌شوند و به کمک روش‌های خطی آنالیز سازه ها، نیروی داخلی مقاطع محاسبه می‌شود. به این نیروی داخلی اصطلاحاً مقاومت لازم گفته می‌شود. مقاومت لازم در یک مقطع شامل: مقاومت خمشی لازم، مقاومت برشی لازم، مقاومت پیچشی لازم و مقاومت بار محوری لازم است.

3- برای هر مقطع، مقاومت طراحی آن از حاصلضرب مقاومت اسمی در ضریبی کوچکتر از واحد به نام ضریب کاهش مقاومت به دست می‌آید. مقاومت اسمی، حداکثر مقاومتی است که مقطع قبل از گسیختگی از خود نشان می‌دهد. مقاومت اسمی یک مقطع مشتمل است از: مقاومت خمشی اسمی، مقاومت برشی اسمی، مقاومت پیچشی اسمی و مقاومت بار محوری اسمی.

4- طراحی مقطع به نحوی که در آن مقاومت لازم از مقاومت طراحی کمتر باشد.

روش طراحی بر مبنای مقاومت، امروزه اساس کار طراحی سازه‌های بتن آرمه می‌باشد.

 

به منظور تکامل روش مقاومت نهایی، به ویژه از نظر نحوه منظور نمودن ایمنی، روش طراحی بر مبتای حالات حدی ابداع گردید. این روش هم اکنون مبنای طراحی در تعدادی از آیین نامه‌های اروپایی است، با این حال این روش هنوز نتوانسته است جای روش مقاومت نهایی را در آیین نامه ACI بگیرد. این روش از نظر اصول محاسبات مربوط به مقاومت، مشابه روش طراحی بر مبنای مقاومت است و تفاوت عمده آن با روش قبل، در نحوه ارزیابی منطقی تر ظرفیت باربری و احتمال ایمنی اعضا می‌باشد. در این روش نیازهای طراحی با مشخص کردن حالات حدی تعیین می‌شوند. منظور از حالات حدی شرایطی است که در آنها سازه مورد نظر خواسته‌های طرح را تامین نمی‌کند.

طراحی سازه با توجه به سه حالت حدی زیر صورت می‌گیرد:

۱- حالت حدی نهایی، که مربوط به ظرفیت باربری می‌شود.

۲- حالت حدی تغییر شکل (مانند تغییر مکان و ارتعاش اعضا

۳- حالت حدی ترک خوردگی یا بازشدن ترک ها

اجرای اسکلت بتن

 سازه بتنی سازه‌ای است که در ساخت آن از بتن یا به طور معمول بتن آرمه (سیمان، شن، ماسه و فولاد به صورت میلگرد ساده یا آجدار) استفاده شده باشد. در ساختمان در صورت استفاده از بتن آرمه در قسمت ستون‌ها و شاه تیر‌ها و پی، آن ساختمان یک سازه بتنی محسوب می‌شود


ساختمان اسکلت بتنی ساختمانی است که در آن اعضا باربر فشاری یا ستونها از نوع بتن آرمه است که در محل قالب بندی و اجرا می گردند همچنین تمام تیرها اصلی هم از نوع بتنی است و دیوار برشی هم که برای مقابله با نیروهای جانبی مورد استفاده قرار می گیرد از نوع بتنی است


مزایای سازه‌های بتنی 


1)
ماده اصلی بتن که شن و ماسه می‌باشد ارزان و قابل دسترسی است
2)
سازه‌های بتنی که مطابق با اصول آیین نامه‌ای طراحی و اجرا شده اند، در مقابل شرایط محیطی سخت، مقاومتر از سازه‌های ساخته شده با مصالح دیگر هستند.

 


3)
به علت قابلیت شکل پذیری بالای بتن، امکان ساخت انواع سازه‌های بتنی نظیر پل، ستون و ... به اشکال مختلف میسر است
4)
سازه‌های بتنی در مقابل حرارت زیاد ناشی از آتش سوزی بسیار مقاوم اند. آزمایشات نشان داده اند که در صورت ایجاد حرارتی معادل ۱۰۰۰ درجه سانتی گراد برای یک نمونه بتن آرمه، حداقل یک ساعت طول می‌کشد تا دمای فولاد داخل بتن، که با یک لایه بتنی با ضخامت 2.5 سانتی متر پوشیده شده است، به ۵۰۰ درجه سانتی گراد برسد

قسمتهای مختلف ساختمان بتنی 


1)
پی و فنداسیون 


2)
ستون 


3)
تیر 


4)
تیرهای فرعی ( تیرچه ها

 
5)
پله 


6)
دیوار برشی 


7)
سقف 

 

مراحل اجرا پی و اجرای آن


شرایط پی کنی و پی ریزی و نوع فنداسیون ساختمان بتنی هیچ فرقی با ساختمانهای دیکر ندارد و از همان انواع فنداسیون در اینجا استفاده شود ولی در اینجا دیگر فنداسیون منفرد نداریم و عرض ارتفاع پی نواری برای ساختمان بتنی با فلزی به علت وزن زیاد ساختمان بتنی متفاوت است
در اینجا هم عرض و ارتفاع مفطع پی با توجه این مکانیک خاک و بارهای وارده و موقعیت منطقه از لحاظ زلزله تعیین می شوند تفاوت عمده فنداسیون ساختمان بتنی با ساختمان فلزی در اتصال ستون به فنداسیون است که در ساختمان بتنی بجای اتصال تیر فلزی به بیس پلیت از میل گردهای انتظار برای اتصال میل گردهای ستون و فنداسیون استفاده می شود که طول آرماتورهای انتظار یک ششم طول ستون است


اجرای ستونها ی بتنی 


ستونها اعضای فشاری هستند که جهت انتقال بار ساختمان به زمین مورد استفاده قرار می گیرند و ستونها ی بتنی که در محل اجرا می شوند شکلهای مختلفی می توانند داشته باشند 


1)
مربعی شکل 


2)
مستطیلی شکل 


3)
دایره ای شکل 


4)
چند ضلعی 


حداقل میلگرد ها برای یک چند گوشه یک میلگرد به ازای هر گوشه می باشد و برای مقطع دایره ای شکل حداقل میلگرد ها 6 عدد می باشد فاضله میلگرد ها در ستونها از هم حداقل 5 سانتی متر و حداکثر 25 سانتی متر است نسبت سطح مقطع میلگرد ها به سطح مقطع ستون حداقل 0.8% و حداکثر 4% و 6% در شرایط خاص می باشد و حداقل سایز میلگرد 14 می باشد پوشش بتن برای عناصر فولادی حدود 5-2.5سانتی متر است
در یک ستون به ازای هر متر 4 عدد خاموت بسته می شود ، معمولا به ازای هر 25 سانتی متر یک خاموت بطور استاندارد است ، در 1/6طول ستون از پائین و بالا فشرده می شود و می تواند 15 سانتی متر کمتر شود و به ازای هر 15 سانتی متر جهت تقویت در مقابل کمانش بسته شوند بطور مثال اگر طول ستون 3 متر باشد در نیم متر از پائین و بالای ستون خاموتها باید فشرده شوند
برای اینکه محور میلگردها ی ستون ثابت بماند و بعد ستون کوچک نشود میلگردها را خم می کنند و خم آنها به اندازه 40 برابر قطر میلگرد است


البته شماره و طول میلگردهای ستون و اینکه میلگردها چقدر باید از سقف بالا تر باشند تا میلگرد انتظار برای ستون طبقه بعد باشند در نقشه مربوط به ستون بتنی داده شده است
پس میلگردها را به طولعای مشخص بریده و به میلگردهای انتظار بسته ودر فواصل مشخص در نقشه خاموتها را می بندند و سپس تا تراز سقف قالب بندی را انجام می دهند و همانطوریکه قبلا هم در مورد قالب بندی بحث شد از انواع قالب با توجه به شکل ستون می توان برای قالب بندی استفاده کرد که بیشتر از قالب چوبی استفاده می کنند و سپس عملیات بتن ریزی را انجام می دهند و با ضربه زدن به قالب در حین بتن ریزی کار ویبراتور را نیز انجام       می دهند


بعد از اینکه اجرای ستونها پایان یافت نوبت به اجرای تیرهای اصلی اتصال است که ستونها را به هم وصل کنند که تیرهای اصلی هم همزمان با سقف قالبندی می شوند و بطور همذمان اجرا می گردنند

اجرای تیر و سقف ساختمان بتنی 


ابعاد مربوط به مقطع تیر وتعداد میلگردها و میلگردهای تقویتی در تیر در نقشه داده شده است و در تیرها خاموتها کار مقابله با نیروهای برشی دارند که مثل ستون در ابتدا و انتها تیر فشرده می شوند
میلگردهای تقویتی در ابتدا و انتها تیر در بالای تیر و برای مقابله با نیروهای فشاری در نظر گرفته می شوند و در وسط تیر در پائین تیر و برای تحمل نیروهای کششی لحاظ می شوند و چون برش تحت زاویه 45 درجه ماکزیمم است زیرا با توجه به دایره موهر تنشها ، تنش برشی که برابربا تحت زاویه 45 درجه ماکزیمم است . به همین خلطر آرماتورهای تقویتی را تحت زاویه 45 درجه بهم وصل می کنند
قالب بندی مربوط به تیرها پس از بستن آرماتورهای مربوط به آن همزمان با سقف اننجام می گیرد و در زیر همزمان با سقف تیرچه بلوک شرح داده خواهد شد

 


اجرای سقف تیرچه بلوک 


سقف تیرچه بلوک شامل تیرچه و بلوک است که تیرچه کار تیر فرعی و بلوک بعنوان قالب برای بتن ریزی و عایق صوتی عمل می کند و به دلیل فضاهای خالی داخل آن موجب سبک شدن سقف می گردد . بطوری که در عمل به سقف تیرچه بلوک سقف سبک هم می گویند


انواع بلوک


-
بلوک سفالی 


-
بلوک سیمانی 


بلوکهای سفالی در کارخانه تولید میشود و جهت اجرا به محل حمل می شوند و بلوکهای سیمانی در کارگاههای محلی اجرا می شوند و نسبت به بلوکهای سفالی ارزانتر تمام می شوند و چون مقاومت بلوک در سقف در نظر اساسی قرار نمی گیرد هیچ اولویتی برای بلوکهای سفالی نسبت به بلوکهای سیمانی نمی تواند قائل شد و به همین خاطراست که برای پروژه های معمولی از بل.کهای بتنی استفاده می شود
تیرچه های سقف معمولاً در کارگاههای محلی تولید می شوند و با توجه به محاسبات مربوط به تیرچه ها و دتایلهای مخصوص سقف تیرچه بلوک شماره میلگردهای پائینی و بالای تیرچه مشخص شده است که باتوجه به طول تیرچه منظور شده اند . شماره میلگردهای پائینی بطور معمول 14و16 و ... و شماره میلگرد بالایی که مونتاژ نامیده می شود کمتر از میلگردهای پائینی است که بعنوان میلگرد حرارتی هم عمل می کند

 

 

 

 
نحوه اجرا 


ابتدا قالب بندی تیرها که معمولاً قالب تخته ای است انجام می شود و عرض قالبها از عرض تیر بیشتر است و در قسمتهایی که قرار است تیرچه ها به تیرها متصل شوند تخته هایی به عرض حدود 10 - 5 سانتی متر بر حسب ضخامت تیر قرار می دهند تا تیرچه ها هنگام اتصال به تیر روی میلگردهای طولی قرار نگیرند و بر آنها بار منفرد وارد نکنند . دور از اینکه در فاصله بین تیرها قرارگرفتند توسط بلوک فاصله دوطرف تیرچه تنظیم می گردد و بعد از آن شمع بندی زیر تیرچه شروع می شو دکه یطور متوسط از هر 15 - 1 متر ، یک ردیف شمع برای تیرچه های سقف در

نظر گرفته می شود


عملیات صورت گرفته در سازه های بتنی


بتن ريزي 


قبل از بتنريزي بايد كليه آرماتورها با نقشه كنترل شود، ‌مخصوصاً دقت شود كه آرماتورها به هم ديگر با سيم آرماتوربندي بسته شده باشد و اگر جاي فراموش شده باشد مجددا بسته شود. فاصله آرماتورها يكنواخت باشد زيرا اغلب اتفاق ميافتد كه در تيرهاي اصلي كه آرماتورها نزديك همديگر بسته ميشود فاصله بين آرماتورها يكنواخت نباشد،‌ بعضي ازآنها به هم چسبيده و بعضي با فاصله ازهم ديگر قرار ميگيرند. اين موضوع باعث ميشود كه بتن نتواند كليه ميلگردها را احاطه نموده و قطعه همگن و توپري به وجود بياورد. بايد محل بتنريزي عاري از خاك و مواد زائد باشد، اگر بين اتمام كارآرماتوربندي و بتن ريزي چند روز فاصله باشد حتماً ميبايد محل كار با دقت بيشتري بازديد شود


كليه قسمتهاي قالب بندي بايد با دقت بازديد شود واز استحكام تيرها و دستكها و قالبها بايد مطمئمن بشويم زيرا تا چند روز كليه وزن بتن و آرماتورهاي آنرا همين قالب تحمل خواهدنمود واگر نقطعه ضعفي درآن باشد كه نتواند بتن را تحمل نمايد و در موقع بتنريزي شكسته وفرو ريزد ضر رمالي بزرگي به كار وارد خواهد شد. زيرا درروز بتنريزي كه رفت وآمد روي قالب زياد بوده و هر كس به كاري مشغول ميباشد مشكل به توان اقدام به تعمير كفراژ نمود. درتمام روز بتنريزي حتماً بايد يك نفر كارگر با تجربه مدام قالبها را اززيركنترل نموده و اثرات اضافه شدن وزن را روي آنها درنظر داشته باشد و درموقع بروز خطرفور افراد ديگر را مطلع نمايد

ويبره كردن بتن 


معمولاً درتيرها ودالها بتن را با دستگاه ويبراتور، متراكم مي نمايند ويبراتور دستگاهي است كه به شيلنگ بلندي ختم شده واين شيلنگ بوسيله موتور برقي ويا بنزيني مرتعش ميشود كه با قراردادن اين شيلنگ در داخل بتن آن را مرتعش نموده و باعث هدايت آن به تمام گوشه هاي قالب ميشوند با توجه به اينكه ويبره كردن بتن مخصوصاً در دالها و تيرهاي اصلي لازم ميباشد ولي بايد متوجه بود كه ويبره كردن بتن بيش ا ز اندازه باعث ميشود كه دانههاي ريزتر و دوغاب سيمان بالا آمده ودانههاي درشتتر به ته قالب هدايت بشود كه اين خود باعث مجزا شدن اجزاء بتن گرديده و موجب ضعف قطعه ريخته شده خواهد شد. بهتر است كه درضمن ويبره كردن بتن بوسيله ضربه زدن به بدنه قالب و يا كوبيدن خود بتن آنرا بخوبي متراكم نموده و نقاط تجمع هوا و فضاهاي خالي را به خوبي پر نماييم.
درموقع ويبره كردن بتن شيلنگ ويبراتور بايد حتيالمقدور دروضع قائم نگاهداشته شود و درامتداد محورش جابه جا گرديده وخيلي آرام درحال كاركردن از بتن بيرون كشيده شود. اگر بتن را ويبره مينماييم بايد زماني كه شيلنگ ويبراتور داخل بتن قرارميگيرد به دفعات بوده وهربار ازيك دقيقه تجاوز نكند وبعداز يك دقيقه بايد آنرا دربتن جابجا نماييم



آرماتوربندي 


آرماتوربندي از حساترين و با دقت ترين قسمتهاي ساختمان بتني ميباشد زيرا كليه نيروهاي كششي در ساختمان بوسيله ميلگردها تحمل ميشود بدين لحاظ دراجرا آرماتوربندي ساختمانهاي بتني بايد نهايت دقت به عمل آيد

 


خمكردن آرماتور


آرماتورهاي تا قطر 12 ميلي متر را ميتوان با دست خم نمود ولي آرماتورهاي بزرگتر از 12 ميلمتر بهتر است با دستگاه مكانيكي مجهز به فلكه خم شود قطر فلكه خم، متناسب با قطر آرماتور بوده و بايد به وسيله مهندس محاسب و مهندسي كارگاه تعيين گردد


وصله كردن آرماتورها


با توجه به اينكه طول ميلگرد كه به بازارها عرضه ميشود 12 متر است و دراغلب قسمتهاي ساختمان ها مخصوصاً د رشناژها ميلگردهائي با طول بيشتر مورد نياز ميباشد و هم اين طور قطعات باقي مانده از شاخههاي بلند كه بالاخره بايد مصرف شود. ناگريز از وصالي ميلگردها هستيم، بهتر است دقت شود حتيالمقدور اين وصالي به حداقل برسد يعني درموقع برشكاري طوري اندازهها را هم جور كنيم كه ريزش آرماتورها زياد نباشد و درصورت اجبار محل مصرف آرماتورهاي وصلهدار با نظر مهندسي ناظر در جائي باشد كه تنشها درآن جا حداقل است و بايد توجه شود كه دريك مقطع كليه آرماتورها وصالي شده نباشد

قالب بندي 


قالبهاي كه براي بتن ساخته ميشود اغلب چوبي بوده ولي براي كارهاي سري سازي از قالبهاي فلزي نيز استفاده ميشود


قالبها وداربست هاي زير آن علاوه بر شكل دادن به بتن وزن آنرا نيز تا زمان سخت شدن تحمل مينمايند. بدين لحاظ اگر دراجراي آن دقت كافي نشود ممكن است در موقع بتنريزي واژگون شده موجب خسارت شود. در ساختمانهاي بزرگ براي قالببندي نيز بايد محاسبه انجام گرفته و نقشه اجرايي تهيه گردد ولي درساختمانهاي كوچك به علت كمي حجم بتن احتياج به محاسبه وتهيه نقشه براي قالب بندي وداربست آن ندارد
شكل قطعات بتني با اندازه آنها كه بايد ريخته شود بايد به وسيله قالب تهيه شود. تخته و چوبي كه براي قالببندي مصرف ميشود بايد كاملاً خشك بوده و در برابر رطوبت تغيير شكل ندهد زيرا تغيير شكل قالب موجب تغيير شكل بتن گشته و در شكل تيرها و ستونها و همچنين ممانهاي وارده برآنها موثر ميباشد. در ايران معمولاً ‌ از تختهاي كه به نام چوب روسي معروف ميباشد براي قالببندي استفاده مينمايند

انواع قالب 


1)
قالببندي پيها 


درساختمانهاي كوچك كه معمولاً براي قالببندي پيها از آجر استفاده ميكنند. بدين طريق كه بعد از خاكبرداري و تعيين محورها اندازه پيها را با آجر چيده و بعد آجرچيني قالب شناژها را نيز به آن متصل مينمايند

مشكل اساسي دراين نوع قالب بندي آن است كه آجر، آب بتني مجاور خودرا مكيده و آنرا خشك نموده و فعل وانفعالات شيميايي را درآن متوقف مينمايد و در نتيجه حداقل به ضخامت 5 سانتيمتر بتن مجاور خود را فاسد ميكند براي جلوگيري از اين كار بهتر است كه رويه آجر با يك ورقه نايلون پوشانيده شود تا آجر و بتن مستقيماً درتماس نباشند. مزيت ديگر اين ورقه نايلون آن ا ست كه بعد از سخت شدن بتن آجرها به راحتي از قالب جداشده و ميتواند درمحل هاي ديگر مورد استفاده قرارگيرد

2)
قالب بندي ستونها 


اغلب ستونها بصورت چهارضلعي (مربع يا مستطيل) ميباشد گاهي نيز ممكن است آرشيتكت ساختمان از نظر زيبائي مقاطع ديگري را از جمله دايره بيضي و غيره پيشنهاد نمايد براي قالب بندي ستونها ابتدا ابعاد ستون را از روي نقشه تعيين نموده و دو ضلع قالب را به همان ميزان از تختههاي مناسب بريده و به چوبهاي چهارتراش كه به آن" پشت بند" ميگويند ميخ مينمايند


درمورد ستونها معمولاً به محض آن كه بتن حالت رواني خود را از دست بدهد و بتواند شكل هندسي خود را حفظ كند قالب آن را باز ميكنند و اين درحدود 48 ساعت بعد از بتنريزي ميباشد درمواقع بازكردن قالب بايد توجه شود كه قالب را با احتياط طوري از بتن جدا نمايند كه گوشههاي تيز ستون خراب نشود براي جلوگيري از اين كار بهتر است درگوشههاي قالب فتيلههائي مثلثي شكل نصب نمايند تا در داخل قالب پختي كوچكي ايجاد گردد تا بتن ريخته شده درقالب تيز گوشه نبوده و درنتيجه شكننده نباشد. قالب ستون بايد حتماً بعد از48 ساعت باز شود زيرا در غيراين صورت آب دادن به بتن به راحتي ميسر نيست و ممكن است بتن خشك شده و به سوزد

3)
قالببندي تيرهاي اصلي 


دراغلب موارد بتن تيرهاي اصلي و سقف يك پارچه ريخته است وآرماتورهاي سقف و تيرهاي اصلي به يكديگر متصل ميباشد. اگر ضخامت تيرهاي اصلي از سقف بيشتر باشد گاهي اين تفاوت ضخامت را از پائين منظور نموده و آنگاه آنرا با سقف كاذب اصلاح مينمايند وگاهي نيز اين تفاوت ضخامت را از بالا منظور نموده براي هم سطح كردن كف و فرش نمودن اطاقها اين اختلاف ارتفاع را با بتن سبك پر مينمايند
درمورد اول قالب تيرهاي اصلي از دوقسمت تشكيل ميشود كه اين دو قسمت عبارتند از كف قالب وگونههاي چپ و راست قالب ازپائين ولي اگر ضخامت تيرهاي اصلي و سقف مساوي باشد و يا اختلاف ضخامت در بالا منظور شود در نتيجه قالب تيرهاي اصلي فقط احتياج به كف دارد

4)
قالب بندي سقف 


درمورد سقف ساختمانهاي بتني آنچه كه درايران معمول است اغلب تيرچه بلوك ميباشد. گاهي نيز از دال بتني پيش ساخته و يا بتن شده در محل استفاده مينمايند درمورد دال بتني پيش ساخته احتياج به قالب بندي نيست زيرا كارخانه سازنده با توجه به دهانه و بارهاي مرده و زنده دالهاي مورد لزوم را به عرض حدود يك متر ريخته و با چرنقيل در محل روي تيرهاي اصلي كه قبلاً ريخته شده و كاملا سخت گرديده است قرارميدهد ولي درمورد سقفهاي بتني ريخته شده درمحل و سقفهاي تيرچه بلوك براي هركدام احتياج به قالب بندي مخصوصي ميباشد براي سقفهاي بتني كه احتياج به قالب بندي مفصلتر و محكمتر دارد معمولا ازبه هم ميخ كردن تختهها و تشكيل صفحهاي به ابعاد مورد نياز استفاده ميكنند كه اين تختهها را روي داربستهاي چوبي قرارداده آنگاه شبكههاي فلزي (آرماتوربندي) را روي آن قرار ميدهند وبتنريزي مينمايند
براي تنظيم قالب بندي وسهولت درقالب برداري ازگوه استفاده مينمايند. گوه قطعه چوبي يا سطح شيبدار است كه درقالب بندي ساختمانهاي بتني براي رگلاژ سقف زير تيرهاي چوبي قرار ميدهند

بازكردن قالب 


اصولاً قالب برداري از ساختمانهاي بتني وقتي بايد انجام شود كه اجزاء بتني به توانند وزن خود را تحمل نمايند براي ستونها و گونه تيرها هم اين قدر كه قطعه به تواند شكل هندسي خود را حفظ كند ميتوان از قطعه قالب برداري كرد ولي بايد دقت شود كه در مورد قالب برداري به گوشه آنها آسيب نرسد زيرا به علت سست بودن بتن تازه دراثر كوچكترين ضربه گوشه آنها خواهد ريخت ولي درمورد تيرها و سقفها حداقل 2 الي 4 هفته بعد از بتن ريزي بايد قالب برداشته شود دراين مدت هرقدر هوا سردتر باشد قالبهاي بايد ديرتر برداشته شود

 دانلود فایل

دانلود فایل مراحل اجرای سقف یوبوت

سیستم های برق خورشیدی